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Abstract

Background: One strategy for addressing missing heritability in genome-wide
association study is gene-gene interaction analysis, which, unlike a single gene
approach, involves high-dimensionality. The multifactor dimensionality reduction
method (MDR) has been widely applied to reduce multi-levels of genotypes into
high or low risk groups. The Cox-MDR method has been proposed to detect
gene-gene interactions associated with the survival phenotype by using the
martingale residuals from a Cox model. However, this method requires a cross-
validation procedure to find the best SNP pair among all possible pairs and the
permutation procedure should be followed for the significance of gene-gene
interactions. Recently, the unified model based multifactor dimensionality
reduction method (UM-MDR) has been proposed to unify the significance testing
with the MDR algorithm within the regression model framework, in which
neither cross-validation nor permutation testing are needed. In this paper, we
proposed a simple approach, called Cox UM-MDR, which combines Cox-MDR
with the key procedure of UM-MDR to identify gene-gene interactions associated
with the survival phenotype.

Results: The simulation study was performed to compare Cox UM-MDR with
Cox-MDR with and without the marginal effects of SNPs. We found that Cox
UM-MDR has similar power to Cox-MDR without marginal effects, whereas it
outperforms Cox-MDR with marginal effects and more robust to heavy censoring. We
also applied Cox UM-MDR to a dataset of leukemia patients and detected gene-gene
interactions with regard to the survival time.

Conclusion: Cox UM-MDR is easily implemented by combining Cox-MDR with
UM-MDR to detect the significant gene-gene interactions associated with the
survival time without cross-validation and permutation testing. The simulation
results are shown to demonstrate the utility of the proposed method, which
achieves at least the same power as Cox-MDR in most scenarios, and outperforms
Cox-MDR when some SNPs having only marginal effects might mask the detection of
the causal epistasis.

Keywords: Survival time, Cox model, Multifactor dimensionality reduction method,
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Background

Many statistical methods in genome-wide association studies (GWAS) have been devel-
oped to identify susceptibility genes by considering a single SNP at a time. Since the
first published GWAS on age-related macular degeneration [1], the GWAS Catalog has
come to contain 60,000 unique SNP-trait associations based on 3300 publications as of
February of 2018 (www.ebi.ac.uk/gwas). However, the effective sizes of the loci identi-
fied via GWAS are relatively small, and these individual loci may not be useful in asses-
sing risk in personal genetics, as pointed out by Moore and Williams [2] and Manolio
[3]. Furthermore, only a small proportion of heritability has been explained, leading to
the missing heritability problem [4].

In order to overcome the missing heritability, the single-locus approach has been
moved into gene-gene interaction analysis because complex diseases might be associ-
ated with multiple genes and their interactions [3]. However, the study of gene-gene in-
teractions in GWAS involves the challenge of higher-order dimensionality, which
Ritchie et al. [5] proposed circumventing using the multifactor dimensionality reduc-
tion (MDR) method, now commonly used to analyze gene-gene interactions in genetic
studies [6, 7]. MDR reduces multi-dimensional genotypes into one-dimensional binary
attributes, in which multi-level genotypes of SNPs are classified into either high or low
risk groups, using a ratio of cases and controls. The MDR algorithm then finds the best
pair of SNPs among all possible SNP combination, yielding the maximum balanced ac-
curacy through cross-validation. The MDR mechanism can apply higher-order interac-
tions such as two-way, three-way and so forth because all combinations of multi-way
interactions can be reduced to either high or low risk groups using the appropriate
classification rules. Many modifications and extensions to MDR have been published
by generalizing the classification rules and phenotypes, including the use of odds ratios
[8], log-linear models [9], a generalized multifactor dimensionality reduction method
(GMDR) for generalized linear models [10], methods for imbalanced data [11],
model-based multifactor dimensionality reduction methods (MB-MDR) [12] and
quantitative multifactor dimensionality reduction (QMDR) for the continuous response
variables [13].

On the other hand, for a prospective cohort study, the MDR concept has been also
extended to investigate those gene-gene interactions associated with the survival time.
Since the first approach, called Surv-MDR, was proposed by Gui et al. [14], both
Cox-MDR [15] and AFT-MDR [16] have been developed for the survival phenotype.
These methods extend the MDR algorithm to the survival time by using alternative
classification rules, which are more applicable to survival data. For example, the classi-
fication rule for Surv-MDR corresponds to a log-rank test statistic whereas those for
Cox-MDR and AFT-MDR correspond to a martingale residual of a Cox model and a
standardized residual of an accelerated failure time (AFT) model, respectively. In
addition, comparing the performance of these three methods, both Cox-MDR and
AFT-MDR have greater power in identifying gene-gene interactions than Surv-MDR
when there is a confounding covariate, whose confounding effect can be adjusted for
under Cox-MDR and AFT-MDR in the frame of regression model. Whereas
Surv-MDR is nonparametric and no covariate effect can be adjusted for [17].

However, the MDR algorithm requires cross-validation to identify the best
multi-locus model among all possible combinations of SNPs and further implements
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computationally intensive permutation testing to check the significance of the selected
multi-locus model. A variety of classification rules has been proposed but the intensive
computational procedure for cross-validation and permutation testing should be imple-
mented as done in the original MDR method.

Recently, the UM-MDR method has been proposed to address this issue by unifying
the significance test with the MDR algorithm using regression model [17]. UM-MDR
provides the significance test for the multi-locus model by introducing an indicator
variable for the high risk after classification. It also allows a variety of classification
rules and phenotypes.

In this paper, we proposed a simple approach, called Cox UM-MDR, which combines
Cox-MDR with UM-MDR. We compared it with Cox-MDR by simulation studies. We
also applied the proposed method to a real dataset of Korean leukemia patients and
concluded with a discussion.

Methods

As described in Yu et al. [18], the UM-MDR method was proposed to avoid the inten-
sive computing procedure for achieving the significance of a multi-locus model. To
this, they proposed a two-step unified model based MDR approach, in which
multi-genetic levels were classified into high and low risk groups and an indicator vari-
able for high risk group was defined in the first step, and then the significance of
multi-locus model was achieved in the regression model with an indicator variable as
well as adjusting covariates in the second step. The key idea of UM-MDR is to unify
the algorithm of MDR and the significance testing of multi-locus model by using an in-
dicator variable for high risk group. UM-MDR allows different types of traits and evalu-
ation of the significance of existing MDR methods.

In this paper, we extended UM-MDR to the survival phenotype using Cox-MDR. In
the first step of Cox UM-MDR, we classify the multi-level genotypes into high or low
risk groups by using the martingale residual of a Cox model with only the baseline haz-
ard function. We then define an indicator variable, S, taking 1 for the high-risk group
and O for the low-risk group. In the second step, we fit a Cox model given as follows:

ME1S,2) = do(t) exp(BS +7'2)

Here Ao(t) is a baseline hazard function, S is an indicator variable for the high-risk
group and Z is the vector coding for the adjusting covariates, § and y are the corre-
sponding parameters to S and Z, respectively. By testing the null hypothesis of Hy: S =
0, we investigate whether the corresponding multi-locus is associated with the survival
time after adjusting for covariate effects. In order to test the significance of multi-locus

model, we used the Wald-type test statistic, W = /;’2 /Var(B), whose asymptotic distri-
bution is not the central chi-square distribution under the null hypothesis [12]. This is
because the expected value of the estimate of /3 is not equal to zero under the null hy-
pothesis, which is owing to the fact that S represents a high-risk group classified by the
martingale residual in the first step. In other words, the asymptotic null distribution of
VW has a nonzero mean due to the classification step and the asymptotic distribution
of its squared statistic, W, follows the non-central chi-square distribution with one de-
gree of freedom and the non-centrality parameter 4. Since the mean of the non-central
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chi-square distribution is g+ 1, we can estimate the non-centrality parameter as, ¢
= max(0, z-1) where # is the estimator for the mean of W under the null distribu-
tion. In order to estimate g, we permuted the trait a few times, say 5 times, and took
the sample mean for statistic W as ji. We can estimate the non-centrality parameter for
each multi-locus model or pool all the statistics and then estimate the common
non-centrality parameter for all multi-loci models as mentioned in [18].

Through intensive simulation studies, we compared the performance of Cox
UM-MDR with that of Cox-MDR without and with adjusting for marginal effects. We
considered two disease-causal SNPs among 10 unlinked diallelic loci with the assump-
tion of Hardy-Weinberg equilibrium and linkage equilibrium. For the covariate adjust-
ment, we consider only the one covariate which is associated with the survival time but
has no interactions with any SNPs. We generated simulation datasets from different
penetrance functions [11], which define a probabilistic relationship between the high or
low risk status of groups and SNPs. We then considered 14 different combinations of
two different minor allele frequencies of (0.2, 0.4) and seven different heritability of
(0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4). For each of 14 heritability-allele frequency combina-
tions, a total of five models were generated, yielding 70 epistasis models with various
penetrance functions, as described in [11] (supplemental Table 1).

Let f be an element from the i row and the K column of a penetrance function.
Assuming that SNP1 and SNP2 are the two disease-causal SNPs, we have the following

penetrance function:

£ = P(high risk | SNP1 = i, SNP2 = k)

We generated 400 patients from each of 70 penetrance models to create one simu-
lated dataset and repeated this procedure 100 times. We simulated the survival time

from a Cox model specified as follows:

Atlx, z) = Ao(t) exp(ax + yz)

Here «x is an indicator variable with value 1 for the high-risk group and 0 for the
low-risk group. We set ¢ =1.0,y=1.0 and z as an adjusting covariate generated
from N(0, 1). In addition, the baseline hazard function follows a Weibull distribution
with a shape parameter of 5 and a scale parameter of 2, the censoring time being gener-
ated from a uniform distribution, U(0,c) depending on the censoring fractions which
have four different censoring fractions of (0.0, 0.1, 0.3, 0.5).

For the power comparison, we consider two different scenarios for the simulation
study. First, we conducted the power comparison when there is no marginal effect of
SNPs. Under this scenario, the survival times are generated from the Cox model as

follows:
At|x,z) = Ao(¢) exp(ax + yz)

where a = 1.0, y = 1.0.
Secondly, we compared the power of Cox UM-MDR with that of Cox-MDR when
there is a marginal effect of SNPs. Under this scenario, the survival times are generated

from the given Cox model as follows:
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A(t|x, z, SNP3) = A (¢) exp(ax + yz + OSNP3)

where &« = 1.0,y = 1.0,6 = 0.5, and § denotes the marginal main effect of SNP3 on the
hazard rate.

Results

Simulation results

We first considered whether the type I error is controlled under the null hypothesis.
For type I error, the simulation data sets were iteratively generated 1000 times under
the null hypothesis of no genetic effect model across 5 different MAFs and 4 different
censoring fractions. The raw type I error was calculated without adjusting the
non-centrality of the asymptotic chi-square distribution while the corrected type I error
was calculated by adjusting the non-centrality. As shown in Table 1, the raw type I
error is not controlled and increases as the minor allele frequency increases while the
corrected type I error is well-controlled regardless of MAF. Here, we tried 5 times per-
mutation for estimating the non-centrality because the number of permutations did
not affect the test statistics, W. In addition, Fig. 1 displays Q-Q plots for the uncor-
rected (raw) and corrected type I errors, respectively.

For the power comparison, 100 simulated datasets for each of the 70 models were
generated including two disease-causal SNPs. The power of Cox UM-MDR is defined
as the percentage of times that the corrected (after Bonferroni correction) p-value for
testing the significance of the indicator variable S is less than or equal to the nominal
size, called PBonf, as referred in [18]. On the other hand, the power of Cox-MDR is de-
fined as the percentage of times that Cox-MDR correctly chooses the two
disease-causal SNPs as the best model out of each set of 100 datasets for each model.
This is because the significance of the best pair of SNPs selected by Cox-MDR can only
be obtained by permutation testing. Therefore, the power of Cox-MDR may not be
comparable with PBonf in terms of the evaluation measure. For a fair comparison, the
alternative power of Cox UM-MDR is defined similarly as that of Cox-MDR, being the
percentage of times that the causal model is ranked first by the corrected p-value,
called PRank, as referred in [18]. We compared the PBonf and PRank of Cox
UM-MDR with the power of Cox-MDR.

As mentioned in the previous section, we considered two different scenarios, with
and without the marginal SNP effects.

Under the first scenario in which no marginal SNP effect is considered, we classified
the multi-genetic genotypes into high and low risk groups using this martingale

Table 1 Raw and Corrected Type | error rates for PBonf

MAF Cf=00 Cf=0.1 Cf=03 Cf=05

Raw Corr Raw Corr Raw Corr Raw Corr
0.05 0.171 0.048 0.168 0.059 0.166 0.049 0.148 0.038
0.10 0233 0.031 0.229 0.038 0.229 0.043 0.227 0.037
0.20 0410 0.025 0.389 0.026 0.388 0.019 0.379 0.017
030 0535 0.020 0.552 0.027 0539 0.026 0536 0.029

040 0.641 0.023 0651 0.028 0652 0.032 0635 0.028
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residual of a Cox model with only the baseline hazard function and define S as 1 for a
high-risk group and 0 otherwise. Next, we fit the following Cox model:

A(t|S,z) = Ao(2) exp(BS + yz)

In the model above, we tested the null hypothesis Hy: 8 = 0 which means that there
is no significant multi-locus effect associated with the survival phenotype. If this null
hypothesis is rejected, it implies that there is a significant gene-gene interaction associ-
ated with the survival time. We overlaid the three different power curves related to
Cox UM-MDR and Cox-MDR as shown in Fig. 2, in which the x-axis represents 70
models ordered by the values of 2 different MAF and 7 different heritabilities. Since
there are 5 models available for each combination of MAF and heritability, a total of 70
different powers are plotted consecutively on the x-axis, in which 14 different points
represents the heritability within each MAF. The power results show a consistent trend
in that PRank of Cox UM-MDR is always greater than PBonf of Cox UM-MDR and the
power of Cox-MDR. Under no censoring, the PRank of Cox UM-MDR is similar to the
power of Cox-MDR but the PRank of Cox UM-MDR is greater than the power of
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Fig. 2 Power curves of PRank and PBonf for Cox UM-MDR and Cox-MDR without marginal effect model
across the combinations of MAF, heritability and censoring fraction
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Cox-MDR as the censoring fraction increases. In general, the power trend is consistent
in the sense that it is more powerful for MAF = 0.2 than MAF =0.4. The power in-
creases as the heritability increases but decreases as the censoring fraction increases.
However, the PRank of Cox UM-MDR seems robust even under heavier censoring than
0.5 whereas the power of Cox-MDR decreases rapidly when the censoring fraction is
heavier than 0.5.

Under the second scenario which marginal SNP effect is considered, we classified the
multi-genetic genotypes into high and low risk groups using this martingale residual of
a Cox model with only the baseline hazard function and define § as 1 for a high-risk
group and O otherwise. Next, we fitted the following Cox model:

A(E|S,z) = Ao(t) exp(BS + yz + w1 SNP1 + w,SNP2)

where SNP1 and SNP2 represent the main effects of SNPs attributed to the defin-
ition of S. In the model above, we tested the null hypothesis of Hy:S =0, which
means that there is no significant multi-locus effect associated with the survival
phenotype. Figure 3 displays the three different power curves overlaid. As shown
in Fig. 3, the PRank of Cox UM-MDR is always largest and the PBonf of Cox UM-
MDR is rank second in relation to the power of Cox-MDR. The general trend of
these three power curves is the same as that without considering the marginal ef-
fect in terms of MAF, heritability and the censoring fraction. However, it is noted
that the power of Cox-MDR is very low for almost all cases, which implies that
the two-way interaction effect between SNPs can hardly be discriminated from the
main marginal effect. On the other hand, Cox UM-MDR can detect the two-way
interaction effect in the unified model by controlling the main effects of SNPs. As
shown in Figs. 2 and 3, the PRank of Cox UM-MDR has reasonable power when
the heritability is larger than 0.2 and seems to be robust to the censoring fraction
regardless of considering the main effect of SNPs. In addition, when we compared
the CPU time for the power calculation, Cox UM-MDR takes 146 s for fitting one
model whereas Cox-MDR takes 1600 s, which implies that Cox UM-MDR is almost
10 times faster than Cox-MDR.
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Fig. 3 Power curves of PRank and PBonf for Cox UM-MDR and Cox-MDR with marginal effect model across
the combinations of MAF, heritability and censoring fraction
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Real data analysis

We applied the Cox UM-MDR procedure to analyze real leukemia patient data and
compared the results with those obtained by Cox-MDR. This real dataset of 97 AML
patients who had been followed-up which have age, sex and genetic information of 139
SNPs. At the end of the study, there were 40 deaths and 57 patients still alive. We con-
sidered two adjusting covariates, age and sex, in detecting gene-gene interaction associ-
ated with the survival time.

To take into account the marginal effect of SNP, we first fitted a univariate Cox
model with each SNP adjusting for age and sex. We found that 21 SNPs had a signifi-
cant marginal effect on the survival time. To summarize the marginal effects of 21
SNPs, we implemented the principal component analysis and took the two principal
components (PC) as a covariate, which account for 78% of variation. We considered
the four different models in identifying gene-gene interactions by Cox UM-MDR as

follows:

(1) PC unadjusted and main effects of SNP1 and SNP2 unadjusted:

A(t|S, age, sex) = do(t) exp(BS + y, age + y,sex)

(2) PC adjusted and main effects of SNP1 and SNP2 unadjusted:

A(t|S, age, sex, PC) = Ao(t) exp(BS + y,age + y,sex + 81 PCy + §,PC,)

(3) PC unadjusted and main effects of SNP1 and SNP2 adjusted:

A(t|S, age, sex, SNP1,SNP2) = Ao(t) exp(BS + y,age + y,sex + 0;SNP1 + 0,SNP2)

(4) PC adjusted and main effects of SNP1 and SNP2 adjusted:

A(t|S, age, sex, PC, SNP1,SNP2) = Ao(t) exp(BS + y,age + y,sex + 6:PC;
+8,PC, + 6,SNP1 + 6,SNP2)

The Venn diagram in Fig. 4 shows the number of SNP pairs that have a p-value less
than 0.05 for testing Hy: /5 =0 without adjusting multiple testing by the four models
above. As shown in the Venn diagrams, 640 pairs, 279 pairs, 492 pairs and 432 pairs
are detected by models (1), (2), (3) and (4), respectively. More SNP pairs are detected
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Fig. 4 Venn diagram for the number of SNP pairs identified by the four models

when the PC effect is unadjusted rather than adjusted in the model, for example, (640,
492) vs. (279, 432). The adjusting effect of PC seems more substantial when the main
effect of SNPs is unadjusted since the number of SNP pairs decreases from 640 to 279.
However, the adjusting effect of PC is not critical when the main effect of SNPs is ad-
justed because the number of SNP pairs decreases from 492 to 432. As shown in Figs. 4,
68 SNP pairs are overlapped by all four models, which imply that 68 multi-locus
models might be significant with the survival phenotype regardless of the adjusting fac-
tors. For these 68 multi-locus we investigate whether the interaction effect of the corre-
sponding SNP pairs was statistically significant or not by testing the interaction
coefficient under the Cox model given as follows:

\(t|age, sex, SNP1, SNP2, SNP1 « SNP2) = Ao(t) exp(y,age + y,sex + 0:SNP1 (1)
+8,SNP2 + 5 SNP1 x SNP2)

Among the 68 SNP pairs, only 16 pairs provided statistically significant interaction ef-
fects with a p-value less than 0.05, which implies that Cox UM-MDR may yield more
false positive results than Cox regression model. The gene-gene interaction effect can
be described in various terms, for example, using a semi-parametric model like a Cox
model or a nonparametric approach like Cox UM-MDR and so forth. The more im-
portant point is that the interaction effect detected by the statistical method should be
interpreted from a biological point of view. However, it is not easy to connect the stat-
istical significance directly to the biological findings.

Among the 16 pairs, we selected the top two SNP pairs and compared these with the
top two SNP pairs detected by Cox-MDR. Since the Cox model is commonly used to
explain the association between risk factors and survival time, we compared the power
of both Cox UM-MDR and Cox-MDR by significance testing for the interaction effects
in a Cox model. Table 2 shows the p-values for testing the interaction effects for the
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Table 2 Significance test for the interaction effects of top two SNP pairs identified by Cox
UM-MDR and Cox-MDR

Method SNP1 SNP2 P-value

Cox UM-MDR 15747199 152847153 0.008
151960207 1004474 0.005

Cox-MDR rs532545 rs2847153 0.591
rs12404655 151004474 0.098

selected SNP pairs by both Cox UM-MDR and Cox-MDR methods, respectively. The
comparison is valid since both Cox UM-MDR and Cox-MDR share a common algo-
rithm for classifying the multi-level genotypes into high and low risk groups. Cox
UM-MDR shows greater power in detecting the epistasis between two SNPs than does
Cox-MDR. As shown in Table 2, the top two pairs of (rs747199, rs2847153) and
(rs1960207, rs1004474) selected from Cox UM-MDR have significant interaction effects
(p=0.008 and 0.005), respectively. On the other hand, the top two pairs of
(rs12404655, rs1004474) and (rs532545, rs2847153) show no significant interaction ef-
fect (p =0.098 and 0.591), respectively. It is interesting to note that both (rs2847153)
and (rs1004474) are selected simultaneously as one part of a SNP pair by both Cox
UM-MDR and Cox-MDR but the interaction effect for the corresponding SNP pairs is
determined by the other part of SNP pair such as (rs747199) and (rs1960207) by Cox
UM-MDR. Although Cox-MDR selects the two pairs of (rs12404655, rs1004474) and
(rs532545, rs2847153) as the best, the interaction effect of these pairs is not found to
be significant in the Cox regression model. This is one of drawbacks of Cox-MDR
method, in which it cannot be guaranteed that the best SNP pairs are statistically sig-
nificant without permutation testing.

In addition, we investigated how well the high and low risk groups can be classified
by the SNP pairs attributed by Cox UM-MDR. To this end, we fitted a Cox model
given in (1) with the attributed SNP pairs and calculated a risk score from the fitted
model. We then classified all subjects into high and low risk groups based on the me-
dian risk score and tested the equivalence of the survival curves of these two groups by
a log-rank test. We found significant log-rank test results with very low p-values for all
68 SNP pairs. Figure 5 displays four plots which include the survival curves of
high-risk and low-risk groups attributed by (rs747199, rs2847153), (rs1960207 and
rs1004474), (rs12404655, rs1004474) and (rs532545, rs2847153), respectively. As shown
in Fig. 5, the two survival curves of high and low risk groups are significantly separated,
with almost zero p-values. Furthermore, we investigated the effect of SNPs on the sig-
nificant separation of these two survival curves by comparing the change of the
log-rank test statistics. As displayed in Table 3, the log-rank test statistic of the no SNP
effect model is 12.798, which means that two survival curves are significantly separated
by both age and sex. By adding the SNP pairs attributed by Cox UM-MDR, the
log-rank test statistic increases to 18.341 and 20.672, respectively, which show more
powerful result. However, for the SNP pairs attributed by Cox-MDR, the log-rank test
does not guarantee more powerful result because one of SNP pairs yields the lower
log-rank test statistic of 8.976 whereas the other case provides the log-rank test statistic
of 17.278. For all 16 SNP pairs showing the significant interaction effects, which are at-
tributed by Cox UM-MDR, the power of the log-rank test is always greater than that
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Fig. 5 Kaplan-Meier curves for the high-risk and low-risk groups attributed by SNP pairs from Cox UM-MDR
(above) and Cox-MDR (below)

under the model only with age and sex (data not given here). It would be said that the
multi-locus model identified by Cox UM-MDR performs better in detecting the high
risk group.

Discussion
In this paper, we proposed a simple approach, called Cox UM-MDR, which combines
the classification rule of Cox-MDR with the testing procedure of UM-MDR for the

Table 3 Comparison of the log-rank tests between no SNP effect model and SNP effect model
attributed by Cox UM-MDR and Cox-MDR

Model Covariates Log-rank test p-value
No SNP effect model Age, Sex 12.798 0.0003
SNP effect model Age, Sex, (15747199, rs2847153)° 18.341 0.0000
by Cox UM-MDR Age, Sex, (51960207, rs1004474)° 20672 0.0000
SNP effect model Age, Sex, (rs532545, rs2847153)° 8.976 0.0027
by Cox-MDR Age, Sex, (rs12404655, rs1004474)° 17278 0.0000

@ denotes the model including two main effects of SNP1 and SNP2 and their interaction effect
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survival phenotype. Through the intensive simulation study, we compared the power of
Cox UM-MDR with that of Cox-MDR. The simulation results show that Cox
UM-MDR is more powerful than Cox-MDR and is robust to the censoring fraction.
Furthermore, we applied the proposed method to a real dataset of Korean leukemia pa-
tients and compared the results with those of Cox-MDR. We found that the results
from Cox UM-MDR are more consistent than those from Cox-MDR in that the inter-
action effect of SNP pairs identified by Cox UM-MDR is statistically significant,
whereas those identified by Cox-MDR show no significant interaction effect in a Cox
model. In addition, the multi-locus model identified by Cox UM-MDR improves the
power in detecting the high risk group by a log-rank test.
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